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We report experiments in which the nonaxisymmetric sectorial oscillations of water drops have been excited
using acoustic levitation and an active modulation method. The observed stable sectorial oscillations are up to
the seventh mode. These oscillations are excited by parametric resonance. The oblate initial shape of the water
drops is essential to this kind of excitations. The oscillation frequency increases with mode number but
decreases with equatorial radius for each mode number. The data can be well described by a modified Rayleigh
equation, without the use of additional parameters.
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I. INTRODUCTION

Since the 19th century, the dynamics of liquid drops has
aroused great interest in various fields, such as hydrodynam-
ics, aerography, and materials physics, with focus on under-
lying mechanism �1–6�, practical applications �7–9� as well
as models in astral and nuclear physics �10–12�. The small
amplitude oscillation of free drops in vacuum was first
treated by Rayleigh �2� using spherical harmonic bases, and
the oscillation frequency of the normal modes was derived in
linear approximation. Lamb �13� extended this analysis to
the case of a droplet oscillating in an immiscible fluid. With
the development of various containerless processing meth-
ods, these predictions were experimentally verified and ap-
plied to the noncontact measurement of the surface tension
of liquids, especially to the undercooled or reactive melts
�7,9�.

Acoustic levitation suspends objects by an acoustic radia-
tion pressure arising from the nonlinear effect of intensive
ultrasound �14�. It can be applied to the conductors as well as
nonconductors, such as ceramics, organic materials, and mo-
lecular fluid �15� because it has no special requirements for
the electromagnetic property of the samples. The axisymmet-
ric oscillation of acoustically levitated liquid drop in an im-
miscible fluid has been extensively investigated. Measured
oscillation frequencies are in reasonable agreement with the-
oretical results from linear approximation �16�. An oblate
distortion of the levitated drop tends to increase the oscilla-
tion frequency of the axisymmetric mode �17�. The internal
circulation of the fluid within the drop was visualized by
tracing particles illuminated by a sheet light �16,17�. The
interaction of different oscillation modes was revealed by an
image analysis method �18�. The effect of surfactant on the
large amplitude axisymmetric oscillation was investigated in
microgravity �19�. The axisymmetric oscillations have been
numerically calculated with various methods, such as the
marker-and-cell method �20�, the boundary element method
�21�, and the Galerkin/finite-element method �22�. These cal-
culations mainly focus on the oscillation frequency and
shape evolution of the drops. There is a reasonable agree-
ment between the theoretical analysis and experimental ob-
servations.

As compared with the extensive investigations on axisym-
metric oscillations, there are only few studies on the nonaxi-
symmetric oscillation of a free drop. Examples include the
nonaxisymmetric oscillations of drops supported on sub-
strates and excited by mechanic, electromagnetic, or thermal
disturbances �23–25�. These oscillations are complicated be-
cause of the confined interface, the hysteresis of the contact
line of the liquids, or the rapid evaporation of liquids. In this
work, we report the excitation of sectorial oscillation—a cat-
egory of nonaxisymmetric oscillation—of water drops using
acoustic levitation and an active modulation method. The
dependence of the sectorial oscillation frequency on the drop
parameters is investigated.

II. EXPERIMENTAL METHOD

The experimental setup is schematically shown in Fig. 1.
The single-axis acoustic levitator is actuated by a piezoelec-
tric �PZT� transducer, which works at a frequency of about
22 kHz. The ultrasound forms a standing wave between the
emitter and the curved reflector. The sample can be confined
in a potential well around the pressure node of this standing

*Corresponding author; bbwei@nwpu.edu.cn

�

Camera

High speed camera

Reflector
Drop

PZT

Lamp

Emitter

FIG. 1. �Color online� Experimental setup. The levitated water
drop was excited into oscillations by modulation of the voltage
applied to the transducer. The bottom view images were recorded
by a high speed camera. After the modulation was turned off, the
side view image was recorded by another camera.
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wave. The gravity of the sample is counteracted by the sum
of the acoustic radiation force on the whole surface of the
levitated sample. The curved reflector introduces a sufficient
lateral confinement to prevent the escape of the sample.
More details on the single-axis acoustic levitator can be
found elsewhere �26�.

In the experiments, a water drop about 5 mm in diameter
was levitated at the second resonant state of the acoustic
field. To excite the levitated water drop into oscillation, the
electric voltage V applied to the PZT transducer is actively
modulated in the form of V=V0�1+� cos �mt�cos �act, as
shown in Fig. 2, where �m and �ac are the angular frequen-
cies of the modulation signal and the ultrasound, respec-
tively, � the ratio of the modulation amplitude to the initial
electric voltage V0. At high sound pressure level �SPL�, the
liquid drop deforms into an axisymmetric oblate shape �27�.
Under this condition, a small variation in SPL will not sig-
nificantly change the levitation status. Therefore, high SPL
��163 dB� and small amplitude modulation ���0.1� were
adopted in the experiments.

By tuning the modulation frequency upward with an in-
crement of 0.5 Hz, different oscillation modes can be excited
within narrow bands less than 10 Hz wide. Through a win-
dow at the center of the reflector, the bottom view images
�384�384� of the oscillating drop were recorded by a Red-
lake HG 100 K high speed camera at a rate of 2000–5000
frames/s, and the oscillation frequency can be obtained from
the recorded sequence of images. After the cessation of the
modulation, the drop becomes stationary in a few seconds.
The side view image of this stationary drop was recorded by
another camera, which was taken as the equilibrium shape.
The equatorial radius can be obtained from the side view
image �1280�1024� with accuracy better than 1%. The
mass of the drop was obtained by measuring the weight in-
crease in a sponge after absorbing the water drop. Each drop
is used for only one measurement of the oscillation fre-
quency.

III. RESULTS AND DISCUSSIONS

A. Sectorial oscillation patterns

The typical patterns observed in the experiments are illus-
trated in Fig. 3, which are the bottom view images of the
oscillating drops, shown at maximum deviation amplitude.
These patterns are characterized by l �l=2–7� equally spaced
lobes. During the oscillation, these lobes stretch out and con-
tract back alternately. As an example, a typical seven-lobed
oscillation is shown in Fig. 4, where the five selected images
correspond to the phases of 0, � /2, �, 3� /2, and 2� in one
period of evolution, respectively. The oscillation frequencies
of the drops shown in Figs. 3�a�–3�f� are measured to be
30.5, 53, 90, 107, 141, and 154 Hz respectively, which are
exactly half of the corresponding modulation frequencies.
More detailed information concerning the two- to seven-
lobed mode of oscillation can be found in supplementary
movies �28�.
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FIG. 2. Active modulation of the electric voltage applied to the
transducer. In this plot, the modulation amplitude � is 0.1, the
modulation frequency is 100 Hz ��m=200��, and the ultrasound
frequency is 20 kHz ��ac=40000��.
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FIG. 3. �Color online� Typical two- to seven-lobed patterns of
acoustically levitated water drop. These are bottom view images of
the oscillating drops, shown at maximum deviation amplitude.
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FIG. 4. �Color online� Evolution of a seventh mode sectorial
oscillation. The dots are experimental results of �7 acquired from
the recorded images. The solid line is the prediction of �7 by Eq. �3�
with �07=0.07 and �7=308�. The dashed lines shows the variation
of a in the oscillation as the result of modulated acoustic field. The
period of this sectorial oscillation T is 6.5 ms.
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The oscillation of a free drop can be decomposed on the
spherical harmonics basis �2�. According to the degree l and
order m of the spherical harmonics Ylm�	 ,
�, the oscillation
modes are classified into three categories �29�: zonal �m
=0�, tesseral �l�m�0�, and sectorial �l=m�0�. The first
category is referred to as the axisymmetric oscillation and
the others are nonaxisymmetric oscillation. Axisymmetric
oscillation can be well represented by the side view images,
while the sectorial oscillation is mainly characterized by the
bottom view images. Examples of the two categories of os-
cillation are schematically shown in Fig. 5. From the char-
acteristics of bottom view images in Fig. 3, these oscillations
observed in our experiments can be identified to be the sec-
ond to seventh mode sectorial oscillations.

Theoretically, the lth mode sectorial oscillation of a de-
formed drop is described as

r�	,
,t� = r0�	��1 + clYll�	,
�cos �lt� , �1�

where r0�	� represents the equilibrium shape of the initially
flattened drop, and the second term in the rectangular brack-
ets is the oscillating part with angular frequency �l and os-
cillation amplitude cl. By inserting 	=� /2 into Eq. �1�, the
outline of the bottom view image, i.e., the equatorial flange
of the drop, can be expressed as

r�
,t� = a�1 + �l�t�cos�l
 + 
0�� , �2�

where

�l�t� = �0l cos��lt� . �3�

In Eqs. �2� and �3�, a is the equatorial radius of drop at
equilibrium state, �l�t� the transient deviation amplitude of
liquid drop, and �0l the oscillation amplitude of �l�t�.

To compare the experimental observations with the secto-
rial oscillation predicted by Eq. �1�, the outlines of the bot-
tom view images were extracted. The extracted outlines of
the images in Fig. 3 are presented in Fig. 6 as the blue dots.
These dots are fitted with r�
�=a�1+�0l cos�l
+
0�� and
the results are plotted as the red solid lines. The good agree-
ment between the dots and the solid lines confirms that these

oscillations are sectorial oscillation. The oscillation ampli-
tudes �0l are determined as 0.20, 0.17, 0.08, 0.07, 0.08, and
0.07 for the second to seventh mode sectorial oscillations,
respectively.

The time evolution of �l and 
0 can be obtained by fitting
the outlines of a sequence of continuously recorded images.
The result of �7 for the seventh mode sectorial oscillation is
plotted as dots in Fig. 4. These dots are found to agree well
with the prediction of Eq. �3� with �07=0.07 and �7=308�,
which is shown as the solid line. According to the fitted
result of 
0, the rotation rate of the drop is determined to be
less than one round per second, and its effect on the sectorial
oscillation is negligible.

B. Sectorial oscillation frequency

For the free oscillation of a spherical drop with infinitesi-
mal amplitude, the natural frequency of the mode �l ,m� is
given by Rayleigh equation �2�,

fR =
1

2�
� �

�R3 l�l − 1��l + 2� , �4�

where �, �, and R are the surface tension, density, and radius
of the drop, respectively. For an initially deformed drop, such
as the case in the present experiments, the natural frequency
deviates from the value predicted with Eq. �4�. Moreover,
their values for the modes with the same degree l but differ-
ent order m are different from each other, according to the
results in previous investigations �30,31�.

In our experiments, when the active modulation is turned
off, the liquid drop enters the free decaying stage. The decay
time decreases with the increase of l. It takes about 1.5 s for
a typical second mode oscillation to decay to 5% of its initial
amplitude, and about 0.3 s for a seventh mode. The oscilla-
tion frequency does not change from before until after the
cessation of modulation, indicating that the drop oscillates at
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FIG. 5. �Color online� Axisymmetric oscillation and sectorial
oscillation of a spherical drop. �a� Side view and bottom view of the
third mode axisymmetric oscillation. �b� Side view and bottom view
of the third mode sectorial oscillation. The oscillation amplitudes
are 0.3. The dashed lines represent the equilibrium spherical shape
of the drop.
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FIG. 6. �Color online� Outlines of the water drop images dis-
played in Fig. 3. The blue dots are the experimentally extracted
edge points by an image processing method. The red solid lines are
the fitted outlines with r�
�=a�1+�0l cos�l
+
0��.
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its natural frequency. The modulation only helps to surmount
the dissipation of energy.

To explore the relationship between the natural frequency
and the parameters of deformed drops, the sectorial oscilla-
tion frequencies were measured for different modes as well
as different initial equatorial radii a, see Fig. 7. The fre-
quency increases with increasing l, whereas it decreases with
increasing a.

The dependence of the measured oscillation frequency on
drop size and oscillation mode is found to be well described
with a modified expression of Rayleigh equation by substi-
tuting R with a,

f =
1

2�
� �

�a3 l�l − 1��l + 2� . �5�

Equation �5� is depicted in Fig. 7 as solid curves for l
=2–7. In this calculation, the density and surface tension of
water drops at the room temperature of 302 K are adopted,
and the values are 0.071 N/m and 0.996�103 kg /m3,
respectively. According to Eq. �5�, the sectorial oscillation
frequencies depend mainly on the equatorial radius of the
drop. It is probably because the sectorial oscillation is mainly
horizontal. According to Eq. �1�, the oscillating term
clr0�	�Yll�	 ,
�cos �lt is proportional to r0�	�sinl 	, which
has maximum value at the equatorial plane and is zero at the
polar point.

The sectorial oscillation frequency of a deformed drop
can be normalized with respect to the corresponding Ray-
leigh frequency as

f/fR = �a/R�−3/2, �6�

where the ratio a /R indicates the deformation extent of the
drop. The normalized result for the measured oscillation
frequencies agrees well with Eq. �6�, as shown in Fig. 8.
It is clear that the sectorial oscillation frequency decreases
with increasing deformation. As a /R approaches 2.0, the

frequency of the sectorial oscillation declines to about 35%
ofthe corresponding Rayleigh frequency. This result is differ-
ent from that of axisymmetric oscillation, according to the
investigation of Trinh et al. �17�. In their experiment, the
frequency of axisymmetric oscillations increases with the in-
creasing ratio a /R.

C. Excitation of sectorial oscillations

To understand how the sectorial oscillation comes into
being, we analyze the static and dynamic conditions of
the levitated drop. For a stationary drop, the pressures on
the surface are balanced as Pin+ Pg= Prad+ P�+ P0, where Pin
is the inner static pressure, Pg=�g�z0−z� the gravity-induced
pressure, Prad the acoustic radiation pressure, P�=��1 /R1
+1 /R2� the curvature-induced capillary pressure, and P0
the ambient pressure. When the electric voltage applied
to the PZT transducer is actively modulated as V=V0�1
+� cos �mt�cos �act, the incident acoustic pressure pi varies
in a similar form with excess pressure 
Prad ��� cos �mt�.

It is interesting that a nonaxisymmetric oscillation occurs
in an axisymmetric force field, and the frequency is half of
the modulation frequency. Actually, it is excited by paramet-
ric excitation �32,33�. The oscillation is not directly driven
by external force. Instead, parameters influencing the natural
frequency act as the bridge.

According to Eq. �5�, the sectorial oscillation of the
acoustically levitated drop can be expressed in a general
form,

�̈l + �l
2�l = 0, �7�

where

�l
2 =

�l�l − 1��l + 2�
�a3 . �8�

As the acoustical radiation pressure is modulated at a fre-
quency of �m, the equatorial radius is perturbed with the
same frequency as
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FIG. 7. �Color online� Sectorial oscillation frequencies of the
acoustically levitated water drops. The various symbols are the
measured data for l=2–7, respectively. a is the initial equatorial
radius of the drop. The solid lines are the calculated results with
Eq. �5�.
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FIG. 8. �Color online� Oscillation frequency normalized with
corresponding value calculated by Rayleigh’s equation. R is the
radius of water drop when it takes a spherical shape.
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a = a0�1 + 
 cos �mt� , �9�

where a0 is the mean value of a. This has been verified in the
experiments. As for the seventh sectorial oscillation, the
variation, �a /a=
 cos �mt, is plotted as the dashed line in
Fig. 4. By inserting Eq. �9� into Eq. �8� and omitting the high
order terms of 
, the oscillation equation becomes

�̈l + �0l
2 �1 + 3
 cos �mt��l = 0, �10�

where �0l is the natural frequency of drop for a=a0. This is
the classical parametric oscillation equation �32�. One solu-
tion of the Eq. �10� is

�l = �0est cos��l + �/2� , �11�

Where s=�9�l
2
2 /16−�2 /4. When the active modulation

frequency is �m=2�l+� with ����3�l
 /2, s is positive and
�l will increase with time. Therefore the sectorial oscillation
is excited. As for the seventh mode sectorial oscillation illus-
trated in Fig. 4, the values of 
 and �7 are 0.01 and 308�,
respectively. To excite this sectorial oscillation, ��� should be
less than 3.2�, and the corresponding modulation frequency
should be 308�1.6 Hz. This agrees reasonably with the ex-
perimental result of about 308�1 Hz.

The deformation of liquid drop is essential for the excita-
tion of the large amplitude sectorial oscillation. It makes the
natural frequency of the sectorial oscillation different from
that of the corresponding axisymmetric oscillation, which al-
lows sectorial oscillation—rather than the axisymmetric
oscillation—to be excited to large amplitude by resonance.

In the experiments, sectorial oscillations up to the seventh
mode were successfully excited. We believe two aspects of
our experimental setup are important for rendering these ex-
citations possible. First, the levitation force and stability of
the levitator are guaranteed with optimized geometric param-

eters �34�. Second, during the oscillation, the energy dissipa-
tion is weak for the low viscosity liquids immersed in air.
The viscosity of water is about 0.9 mPa s at room tempera-
ture. The dragging effect of surrounding air is slight, as the
density of air is negligible as compared with that of water.

IV. CONCLUSIONS

The sectorial oscillations of liquid drops are parametri-
cally excited by actively modulating the acoustic field. The
sectorial oscillation frequency decreases with increasing
equilibrium radius and can be described by a modified Ray-
leigh equation �Eq. �5��. The oblate initial shape makes the
natural frequency of sectorial oscillation modes different
from that of corresponding axisymmetric modes, and enables
parametric excitation of these oscillations. The relatively low
energy dissipation accounts for the observation of high mode
oscillations in the experiment. This study enriches our
knowledge on drop oscillation. One prospective application
is to measure the surface tension of liquids in a noncontact
manner using the modified Rayleigh equation. We believe
more applications can be found in the study of liquid prop-
erties and the influence of fluid convection on the container-
less processing of materials.
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